Course: General Chemistry 1 (2024)

  • Home Page

    Home Page

    • Course Registration Questionnaire

    • Peer Corner Forum

    • Pre-Test Quiz

  • How to create an account and enroll in the course?

  • General Chemistry 1 Homepage

    Course: General Chemistry 1 (4)

    Welcome to the General Chemistry 1 course, part of the series for the Pre-Health Sciences Training Certificate. This course and the certificate are designed primarily for learners interested in preparing for and gaining entry to health-related programs and to help address the prerequisites for the Medical College Admission Test (MCAT). Our General Chemistry 1 course provides learners with a comprehensive overview of the fundamental principles of chemistry. This course covers basic principles and concepts of chemistry, such as atomic structure, chemical bonding, chemical reactions, stoichiometry, and the properties of gases, liquids, and solids.

    The General Chemistry 1 course is sponsored in part by the International Development Research Centre and the University of the Incarnate Word School of Osteopathic Medicine. Like all NextGenU.org courses, it is competency-based, using competencies based on the Association of American Medical Colleges’ Medical College Admission Test. It uses learning resources from accredited, academic, professional, and world-class organizations and universities, such as Rice University.This course was designed by Alixandria Ali, BSc; Kabiru Gulma, B. Pharm, Ph.D., MSc., MBA; Felix Emeka Anyiam, MPH, MScPH, DataSc.; Sherian Bachan, MSc, BSc; Reisha Narine, MSc, BSc; Aduke Williams, BA; Sara Wildman, BSc; Carolina Bustillos, MD, DiplEd; Rhonda Prudent, BSc; Maryam Musa, MBBS; Pablo Baldiviezo, MD, MSc, DiplEd, and Marco Aurelio Hernandez, Ph.D., MSc; MSc; BSc.

    For publications on the efficacy of NextGenU.org’s courses, see NextGenU.org’s publication page.


    Course: General Chemistry 1 (6)

    There are eight (8) modules to complete, which provide an introduction to:

    • Module 1: Matter and its Properties
    • Module 2: Measurements
    • Module 3: Atomic Structure
    • Module 4: The Periodic Table
    • Module 5: Bonding and Chemical Interactions
    • Module 6: Compounds and Stoichiometry
    • Module 7: Chemical Kinetics
    • Module 8: Chemical Equilibrium

    The completion time for this course is estimated at 46 hours, comprising 13 hours of learning resources, 27 hours of studying and assimilation of the content, and 6 hours of participating in learning activities and quizzes to assist learners in synthesizing learning materials. This course is equivalent to 1 credit hour in the U.S. undergraduate/ bachelor’s degree system.

    The course requires the completion of all quizzes, discussion forums, and practical activities to receive a course certificate. Practice quizzes are available throughout the course and contain ten multiple-choice questions each. After completing each module, quiz, and learning activity, at the end of the course, you will have access to a final exam consisting of 40 multiple-choice questions and a chance to evaluate this course. Participants have up to three opportunities to take the final exam and achieve the required passing score of >=70%. Once you have passed the final exam and completed the evaluations, you can download a certificate of completion from NextGenU.org and our course’s co-sponsoring organizations.

    We keep your personal information confidential, never sell any of your information, and only use anonymized data for research purposes. Also, we are happy to report your testing information and share your work with anyone (your school, employer, etc.) at your request.

    Engaging with this Course:

    This free course is for students who have graduated from high school and want to prepare to become a health professional and/or pass the MCAT exam. You may also browse this free course for your personal enrichment. There are no requirements.

    To obtain a certificate, a learner must first register for the course and then successfully complete the following:

    • The pre-test,
    • All the reading requirements,
    • All quizzes and pass with 70% with unlimited attempts,
    • All case scenarios,
    • All discussion forums,
    • The final exam with a minimum of 70% and a maximum of 3 attempts, and
    • The self and course evaluation forms.

    To obtain credit:

    • Complete all requirements listed above for the certificate, and
    • Your learning institution or workplace should approve the partner-university-sponsored NextGenU.org course for educational credit, as they usually would for their learner taking a course anywhere.

    NextGenU.org is happy to provide your institution with the following:

    • A link to the description of the course training so they can see all of its components, including the co-sponsoring institution,
    • Your grade on the final exam,
    • Your work products (e.g., discussion forum responses) and any other required or optional shared materials you produce and authorize to share with them,
    • Your evaluations -- course and self-assessments, and
    • A copy of your certificate of completion with the co-sponsoring organizations listed.

    To obtain a degree, NextGenU.org co-sponsors degree programs with institutional partners. To obtain a full degree co-sponsored with NextGenU.org, registrants must be enrolled in a degree program as a student of a NextGenU.org institutional partner. If you think your institution might be interested in offering a degree with NextGenU.org, contact us.

    We hope you will find this a rewarding learning experience, and we count on your assessment and feedback to help us improve this training for future students.

    Here are the next steps to take the course and earn a certificate:

    • Complete the registration form,
    • Take the pre-test, and
    • Begin the course with Module 1: Matter and its Properties. In each lesson, read the description, complete all required readings and any required activity, as well as take the corresponding quizzes.
  • Module 1: Matter and Its Properties

    Course: General Chemistry 1 (7)Instructional Goalscovered in this module:
    • Understand the various states of matter with an emphasis on how particles are ordered.
  • Module 1: Lesson 1: Classification of Matter

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Define matter and energy.
    • Describe the laws of the conservation of mass.
    • Compare and contrast the three common states of matter: solid, liquid, and gas.
    • Describe the classifications of the matter: elements, compounds, and mixtures (heterogeneous and hom*ogeneous).
    • Describe the techniques used to separate mixtures.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1 hour and 15 minutes.

    Click here to start this lesson

    1 URL

  • Module 1: Lesson 2: Properties of Matter

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Understand the difference between physical and chemical change.
    • Contrast chemical and physical properties.
    • Relate the properties of matter to particle arrangement, energy of particles, and distance between particles.
    • Contrast extensive and intensive properties.

    Approximate time required for the readings for this lesson (at 144 words/minute): 45 minutes.

    Click here to start this lesson

    1 URL

  • Module 1: Lesson 3: Change of State of matter

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Interpret graphs for heating and cooling processes that involve a change of state.
    • Identify phase changes: melting, freezing, boiling, condensation, sublimation, and deposition.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2 hours and 15 minutes.

    Click here to start this lesson

    1 URL, 1 Forum, 1 Quiz

  • Module 2: Measurements

    Course: General Chemistry 1 (8)Instructional Goalscovered in this module:
    • Understand the difference between accuracy and precision, the different sources of errors in measurements and how to express numbers properly.

  • Module 2: Lesson 3: Mathematical Treatment of Measurement Results

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Determine conversions from one metric unit to another.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 10 minutes.

    Click here to start this lesson

    1 URL, 1 Quiz

  • Module 3: Atomic Structure

    Course: General Chemistry 1 (9)Instructional Goalscovered in this module:
    • Understand the structure and composition of atoms and their isotopes.
    • Understand the structure and composition of molecules and their isomers.
    • Understand the foundational concepts of Quantum Mechanics.
  • Module 3: Lesson 4: Chemical Formulas

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Symbolize the composition of molecules using molecular formulas and empirical formulas.
    • Present the bonding arrangement of atoms within molecules using structural formulas.
    • Determine when the chemical formula of a compound represents a molecule.
    • Determine the isomeric relationship between a pair of molecules.

    Approximate time required for the readings for this lesson (at 144 words/minute): 33 minutes.

    Click here to start this lesson

    1 URL

  • Module 3: Lesson 5: Electromagnetic Energy

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the basic behavior of waves, including traveling waves and standing waves.
    • Describe both the wave and particle nature of light.
    • Correlate the wavelength and frequency of a wave.
    • Use appropriate equations to calculate related light-wave properties such as period, frequency, wavelength, and energy.
    • Explain the different regions of the electromagnetic spectrum.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 33 minutes.

    Click here to start this lesson

    1 URL

  • Module 3: Lesson 6: Development of Quantum Theory

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the concept of wave–particle duality that was observed in electromagnetic radiation to matter.
    • Explain the quantum mechanical description of electrons in orbitals.
    • Attribute the 3D shape of an orbital and how electrons are arranged within the atom to the radial distribution function.
    • List and describe traits of the four quantum numbers that describe orbitals and specify the location of an electron in an atom.
    • State the postulates of Bohr’s theory of the hydrogen atom.
    • Relate the energy of a photon to the associated energy levels of an atom.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2hours and 39 minutes.

    Click here to start this lesson

    2 URLs

  • Module 3: Lesson 7: Electronic Structure of Atoms (Electron Configurations)

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Derive the predicted ground-state electron configurations of atoms and ions.
    • Relate electron configurations to element classifications in the periodic table.

    Approximate time required for the readings for this lesson (at 144 words/minute): 33 minutes.

    Click here to start this lesson

    1 URL

  • Module 3: Lesson 8: Molecular and Ionic Compounds

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Define ionic and molecular (covalent) compounds.
    • Predict the type of compound formed from elements based on their location within the periodic table.
    • Determine formulas for simple ionic compounds.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2hours and 25 minutes.

    Click here to start this lesson

    1 URL, 1 Forum, 1 Quiz

  • Module 4: The Periodic Table

    Course: General Chemistry 1 (10)
    Instructional Goalscovered in this module:
    • Understand fundamental atomic structure and the periodicity of elements in the periodic table.
  • Module 4: Lesson 1: Periodic Variations in Element Properties

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the observed trends in atomic size, ionization energy, and electron affinity of the elements.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1 hour and 9 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 2: History of the Periodic Table

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the history of the periodic table.

    Approximate time required for the readings for this lesson (at 144 words/minute): 18 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 3: The periodic Table

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • State the periodic law and explain the organization of elements in the periodic table.
    • Predict the general properties of elements based on their location within the periodic table.
    • Identify metals, nonmetals, and metalloids by their properties and/or location on the periodic table.
    • Describe how Mendeleev predicted the properties of undiscovered elements.

    Approximate time required for the readings for this lesson (at 144 words/minute): 36 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 4: Effective Nuclear Charge

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the basics of electron shielding and penetration.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1 hour and 9 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 5: Sizes of Atoms and Ions

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Determine periodic trends in atomic radii.
    • Determine the relative ionic sizes within an isoelectronic series.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 45 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 6: Ionization Energy

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Determine the relation between ionization energies with the chemistry of the elements.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 12 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 7: Electron Affinity

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Identify the inverse relationship of ionization energies and electron affinities.
    • Explain electron affinity as a measure of the energy required to add an electron to an atom or ion.

    Approximate time required for the readings for this lesson (at 144 words/minute): 42 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 8: Metals, Non-metals, and Metalloids

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Distinguish the basic properties separating Metals from Nonmetals and Metalloids.

    Approximate time required for the readings for this lesson (at 144 words/minute): 27 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 9: Group Trends for Group 1A and 2A

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Define alkali metals.
    • Contrast alkaline earth metals and alkaline metals.
    • Describe the reactions of alkali metals.

    Approximate time required for the readings for this lesson (at 144 words/minute): 21 minutes.

    Click here to start this lesson

    1 URL

  • Module 4: Lesson 10: Group Trends for Selected Nonmetals

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the chemical properties of Hydrogen, the group 16, 17, and 18 elements.

    Approximate time required for the readings for this lesson (at 144 words/minute): 25 minutes.

    Click here to start this lesson

    1 URL, 1 Quiz

  • Module 5: Bonding and Chemical Interactions

    Course: General Chemistry 1 (11)Instructional Goalscovered in this module:
    • Understand the mole concept in relation to Avogadro’s number and mass, the relationship of percent composition and chemical formula, the use of chemical formulas to represent chemical reactions, and the quantitative relationship of reactants and products in a chemical reaction.
  • Module 5: Lesson 1: Ionic Bonding

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the formation of cations, anions, and ionic compounds.
    • Predict the charge of common metallic and nonmetallic elements, and write their electron configurations.
    • Explain the energetics of ionic bonding.
    • Describe some general properties of ionic substances.

    Approximate time required for the readings for this lesson (at 144 words/minute): 39 minutes.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 2: Covalent Bonding

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the formation of covalent bonds between two atoms.
    • Examine electronegativity to assess the polarity of covalent bonds.
    • Distinguish coordinate covalent bonds from conventional covalent bonds.
    • Correlate the bonding character of molecules from the electronegativity differences between atoms.

    Approximate time required for the readings for this lesson (at 144 words/minute): 51 minutes.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 3: Chemical Nomenclature

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Employ a systematic approach to determine the names of common types of inorganic compounds.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 4: Lewis Symbols and Structures

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Write Lewis symbols for neutral atoms and ions.
    • Draw Lewis structures depicting the bonding in simple molecules.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 5: Formal Charges and Resonance

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Compute formal charges for atoms in any Lewis structure.
    • Use formal charges to identify the most reasonable Lewis structure for a given molecule.
    • Explain the concept of resonance and draw Lewis structures representing resonance forms for a given molecule.
    • Define formal charge and describe the rules for obtaining formal charge.
    • State two rules useful in writing Lewis formulas.

    Approximate time required for the readings for this lesson (at 144 words/minute): 39 minutes.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 6: Strengths of Ionic and Covalent Bonds

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the energetics of covalent and ionic bond formation and breakage.
    • Use the Born-Haber cycle to compute lattice energies for ionic compounds.
    • Use average covalent bond energies to estimate enthalpies of reaction.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 6 minutes.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 7: Molecular Structure and Polarity

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Predict the structures of small molecules using valence shell electron pair repulsion (VSEPR) theory.
    • Explain the concepts of polar covalent bonds and molecular polarity.
    • Assess the polarity of a molecule based on its bonding and structure.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 48 minutes.

    Click here to start this lesson

    1 URL

  • Module 5: Lesson 8: Intermolecular Forces

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Link the types of intermolecular forces possible between atoms or molecules in condensed phases (dispersion forces, dipole-dipole attractions, and hydrogen bonding).
    • Correlate the types of intermolecular forces experienced by specific molecules with their structures.
    • Explain the relation between the intermolecular forces present within a substance and the temperatures associated with changes in its physical state.
    • Identify and contrast inter and intramolecular forces.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2hours and 37 minutes.

    Click here to start this lesson

    1 URL, 1 Forum, 1 Quiz

  • Module 6: Compounds and Stoichiometry

    Course: General Chemistry 1 (12)Instructional Goalscovered in this module:
    • Understand the fundamentals of acid/base reactions, redox reactions, and precipitation reactions.
  • Module 6: Lesson 1: Formula Mass and the Mole Concept

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Calculate formula masses for covalent and ionic compounds.
    • Define the amount unit mole and the related quantity Avogadro’s number.
    • Explain the relation between mass, moles, and numbers of atoms or molecules, and perform calculations deriving these quantities from one another.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 6 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 2: Determining Empirical and Molecular Formulas

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Estimate the percent composition of a compound.
    • Calculate the empirical formula of a compound from percent composition.
    • Calculate the molecular formula of a compound.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 3 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 3: Molarity

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the fundamental properties of solutions.
    • Calculate solution concentrations using molarity.
    • Perform dilution calculations using the dilution equation.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 18 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 4: Other Units for Solution Concentrations

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Define the concentration units of mass percentage, volume percentage, mass-volume percentage, parts-per-million (ppm), and parts-per-billion (ppb).
    • Perform computations relating a solution’s concentration and its components’ volumes and/or masses.

    Approximate time required for the readings for this lesson (at 144 words/minute): 42 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 5: Writing and Balancing Chemical Equations

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Derive chemical equations from narrative descriptions of chemical reactions.
    • Write and balance chemical equations in molecular, total ionic, and net ionic formats.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 12 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 6: Classifying Chemical Reactions

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Distinguish the three common types of chemical reactions (precipitation, acid-base, and oxidation-reduction).
    • Classify chemical reactions as one of these three types given appropriate descriptions or chemical equations.
    • Identify common acids and bases.
    • Predict the solubility of common inorganic compounds by using solubility rules.
    • Compute the oxidation states for elements in compounds.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2hours.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 7: Reaction Stoichiometry

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the concept of stoichiometry as it pertains to chemical reactions.
    • Use balanced chemical equations to derive stoichiometric factors relating amounts of reactants and products.
    • Perform stoichiometric calculations involving mass, moles, and solution molarity.

    Approximate time required for the readings for this lesson (at 144 words/minute): 36 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 8: Reaction Yields

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the concepts of theoretical yield and limiting reactants/reagents.
    • Appraise the theoretical yield for a reaction under specified conditions.
    • Calculate the percent yield for a reaction.
    • Distinguish the limiting reactant and reactant in excess.

    Approximate time required for the readings for this lesson (at 144 words/minute): 42 minutes.

    Click here to start this lesson

    1 URL

  • Module 6: Lesson 9: Quantitative Chemical Analysis

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the fundamental aspects of titrations and gravimetric analysis.
    • Perform stoichiometric calculations using typical titration and gravimetric data.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2hours and 44 minutes.

    Click here to start this lesson

    1 URL, 1 Forum, 1 Quiz

  • Module 7: Chemical Kinetics

    Course: General Chemistry 1 (13)Instructional Goalscovered in this module:
    • Understand and apply relevant Rate Laws and conduct calculations to determine reaction order.
    • Analyze graphs to determine reaction order.
    • Understand Collision Theory and the Arrhenius Equation.
    • Understand reaction mechanisms and use them to analyze rate determining steps.
    • Analyze and create energy diagrams.
  • Module 7: Lesson 1: Chemical Reaction Rates

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Define chemical reaction rate.
    • Calculate reaction rates from experimental data.
    • Identify differences between average rate, initial rate, and instantaneous rate.

    Approximate time required for the readings for this lesson (at 144 words/minute): 48 minutes.

    Click here to start this lesson

    1 URL

  • Module 7: Lesson 2: Factors Affecting Reaction Rates

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Describe the effects of chemical nature, physical state, temperature, concentration, and catalysis on reaction rates.
    • Define a catalyst.

    Approximate time required for the readings for this lesson (at 144 words/minute): 21 minutes.

    Click here to start this lesson

    1 URL

  • Module 7: Lesson 3: Rate Laws

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the form and function of rate law.
    • Use rate laws to calculate reaction rates.
    • Use rate and concentration data to identify reaction orders and derive rate laws.
    • Contrast the rate of a reaction and its rate constant.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 3 minutes.

    Click here to start this lesson

    1 URL

  • Module 7: Lesson 4: Integrated Rate Laws

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the form and function of an integrated rate law.
    • Perform integrated rate law calculations for zero-, first-, and second-order reactions.
    • Define half-life and carry out related calculations.
    • Determine the order of a reaction from concentration/time data.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 6 minutes.

    Click here to start this lesson

    1 URL

  • Module 7: Lesson 5: Collision Theory

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Use the postulates of collision theory to explain the effects of physical state, temperature, and concentration on reaction rates.
    • Define the concepts of activation energy and transition state.
    • Use the Arrhenius equation in calculations relating rate constants to temperature.

    Approximate time required for the readings for this lesson (at 144 words/minute): 57 minutes.

    Click here to start this lesson

    1 URL

  • Module 7: Lesson 6: Reaction Mechanisms

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Distinguish net reactions from elementary reactions (steps).
    • Appraise the molecularity of elementary reactions.
    • Write a balanced chemical equation for a process given its reaction mechanism.
    • Derive the rate law consistent with a given reaction mechanism.
    • Distinguish unimolecular, bimolecular, elementary, and overall reaction.

    Approximate time required for the readings for this lesson (at 144 words/minute): 54 minutes.

    Click here to start this lesson

    1 URL

  • Module 7: Lesson 7: Catalysis

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Explain the function of a catalyst in terms of reaction mechanisms and potential energy diagrams.
    • List examples of catalysis in natural and industrial processes.
    • Compare the functions of hom*ogeneous and heterogeneous catalysts.

    Approximate time required for the readings for this lesson (at 144 words/minute): 2hours and 35 minutes.

    Click here to start this lesson

    1 URL, 1 Forum, 1 Quiz

  • Module 8: Chemical Equilibrium

    Course: General Chemistry 1 (14)Instructional Goalscovered in this module:
    • Understand the concepts and applications of general chemical equilibria and Le Chatelier’s Principle.
  • Module 8: Lesson 1: Chemical Equilibrium

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Question the nature of the equilibrium system.
    • Explain the dynamic nature of chemical equilibrium.

    Approximate time required for the readings for this lesson (at 144 words/minute): 30 minutes.

    Click here to start this lesson

    1 URL

  • Module 8: Lesson 2: Equilibrium Constants

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Derive reaction quotients from chemical equations representing hom*ogeneous and heterogeneous reactions.
    • Calculate values of reaction quotients and equilibrium constants, using concentrations and pressures.
    • Correlate the magnitude of an equilibrium constant to properties of the chemical system.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1hour and 27 minutes.

    Click here to start this lesson

    1 URL

  • Module 8: Lesson 3: Shifting Equilibria: Le Châtelier’s Principle

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Articulate the ways in which an equilibrium system can be stressed.
    • Determine the response of a stressed equilibrium using Le Châtelier’s principle.

    Approximate time required for the readings for this lesson (at 144 words/minute): 1 hour and 21 minutes.

    Click here to start this lesson

    2 URLs

  • Module 8: Lesson 4: Equilibrium Calculations

    Student Learning Outcomes:

    Upon completion of this lesson, you will be able to:

    • Write equations representing changes in concentration and pressure for chemical species in equilibrium systems.
    • Use algebra to perform various types of equilibrium calculations.

    Approximate time required for the readings for this lesson (at 144 words/minute): 3hours and 38 minutes.

    Click here to start this lesson

    1 URL, 1 Forum, 1 Quiz

  • Course: General Chemistry 1 (16)In this section, you can provide feedback about this course to help us make NextGenU.org better. Once evaluations are completed, you will be able to download your certificate of completion.

    Click here give your feedback

  • Course Activities

    1 Page

Course: General Chemistry 1 (2024)
Top Articles
Latest Posts
Article information

Author: Terrell Hackett

Last Updated:

Views: 5409

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Terrell Hackett

Birthday: 1992-03-17

Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

Phone: +21811810803470

Job: Chief Representative

Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.